Что такое пьезоэлектрический эффект. Пьезоэлектрики: прямой и обратный пьезоэффект Прямой и обратный пьезоэлектрический эффект

При помещении диэлектрика во внешнее электрическое поле на заряды его молекул действуют силы, которые деформируют диэлектрик, создают внутренние механические напряжения. Деформация диэлектрика оказывается пропорциональной квадрату напряженности электрического поля. Это явление получило название "электрострикция". Электрострикция обусловлена поляризацией диэлектриков в электрическом поле и наблюдается у твердых, жидких и газообразных диэлектриков. Электрострикцию следует отличать от так называемого обратного пьезоэффекта. При обратном пьезоэффекте деформация диэлектрика пропорциональна напряженности электрического поля.

В изотропных средах, в том числе в газах и жидкостях, электрострикция наблюдается как изменение плотности под действием электрического поля.

В анизотропных кристаллах электрострикцию можно описать зависимостью между двумя тензорами 2-го ранга - тензором квадрата напряженности электрического поля и тензором деформации. Рассмотрение электрострикции в таких кристаллах выходит за рамки данного курса.

Деформация диэлектрика в однородном внешнем электрическом поле может быть вызвана переориентацией диполей (молекул) и изменением электрического дипольного момента молекул, изменением взаимодействия между ними. В неоднородном внешнем электрическом поле диполи (молекулы) диэлектрика втягиваются (или выталкиваются) в область более сильного поля. Следовательно, на закрепленный диэлектрик будут действовать силы, вызывающие деформацию диэлектрика, зависящую от степени неоднородности электрического поля.

В большинстве диэлектриков поляризация появляется и исчезает с появлением и исчезновением внешнего электрического поля.

Однако некоторые кристаллические диэлектрики, названные (по наиболее яркому представителю сегнетовой соли) сегнетоэлектриками, обладают рядом специфических свойств, которые позволяют их выделить в особую группу.

К сегнетоэлектрикам относятся диэлектрики, обладающие в определенном интервале температур спонтанной (самопроизвольной) поляризованностью даже в отсутствие внешнего электрического поля.

электрического поля. Возникшее электрическое поле доменов поддерживает ориентацию дипольных моментов доменов даже после прекращения внешнего электрического поля (рис. 3.11).

Основными свойствами сегнетоэлектриков являются:

а) диэлектрическая проницаемость их гораздо больше единицы (e>>1);


б) диэлектрическая проницаемость сегнетоэлектриков зависит от напряженности внешнего электрического поля (рис. 3.12);



в) во внешнем электрическом поле сегнетоэлектрики поляризуются до насыщения, т. е. до такого состояния, при котором дальнейшее изменение напряженности электрического поля не изменяет вектор поляризации (рис.3.13);

г) во внешнем циклически изменяющемся электрическом поле им присуще явление гистерезиса, сложная зависимость вектора поляризации от напряженности электрического поля. Изменение вектора поляризации запаздывает по отношению к изменению напряженности электрического поля (рис. 3.14);

д) по своему строению сегнетоэлектрики представляют скопление областей спонтанной поляризации (доменов), электрические дипольные моменты которых имеют хаотические ориентации вектора P (рис.3.10, 3.11);

е) при нагревании сегнетоэлектриков до определенной температуры Т к, характерной для каждого сегнетоэлектрика, они теряют все свои специфические свойства и превращаются в обычные полярные диэлектрики. Точка фазового перехода из состояния сегнетоэлектрика в состояние полярного диэлектрика называется точкой Кюри, а соответствующая ей температура Т к - температурой Кюри. В некоторых случаях имеются две точки Кюри - сегнетоэлектрические свойства исчезают также и при понижении температуры. Сегнетоэлектриков с двумя точками Кюри сравнительно немного. Большинство имеет лишь верхнюю точку, называемую просто точкой Кюри.

При переходе диэлектрика из сегнетоэлектрического состояния в состояние полярного диэлектрика диэлектрическая проницаемость изменяется непрерывно от значения, соответствующего сегнетоэлектрическому состоянию, до значения, соответствующего состоянию полярного диэлектрика.

Закон изменения диэлектрической восприимчивости c вблизи температуры Кюри имеет вид

, (3.28)

где A – некоторая константа;



T o – температура Кюри – Вейса, близкая к температуре Т к (в большинстве случаев вместо Т o используют Т к, что не вносит сколько-нибудь существенных погрешностей в c для температур, отличных от Т к). Закон, выражаемый формулой (3.28), называется законом Кюри-Вейса.

У кристаллов диэлектрические свойства неодинаковы по различным направлениям, и поэтому их диэлектрическая восприимчивость характеризуется не скалярной диэлектрической восприимчивостью c, а тензором диэлектрической восприимчивости c ij . Однако зависимость компонент тензора от температуры имеет тот же характер.

Помимо сегнетоэлектриков имеются многочисленные кристаллы, на поверхности которых при деформациях возникают электрические заряды. Такие кристаллы называются пьезоэлектриками. Возникающие при деформации поверхностные заряды имеют различные знаки на различных частях поверхности. К числу пьезоэлектриков относят кварц, турмалин, сегнетовую соль и многие другие.

Пьезоэлектрическими свойствами обладают только ионные кристаллы. Под действием внешних сил кристаллическая подрешетка из положительных ионов деформируется иначе, чем кристаллическая подрешетка из отрицательных ионов. В результате происходит относительное смещение положительных и отрицательных ионов, приводящее к возникновению поляризации кристалла и поверхностных зарядов. Поляризованность в первом приближении прямо пропорциональна деформации, а деформация кристалла, в свою очередь, прямо пропорциональна силе. Следовательно, поляризованность прямо пропорциональна приложенной силе. Между разноименно заряженными гранями деформированного диэлектрика возникает разность потенциалов, которую можно измерить, а по ее значению сделать заключение о величине деформаций и приложенных силах, что находит многочисленные практические применения. Например, имеются пьезоэлектрические датчики для измерения быстропеременных давлений. Известны пьезоэлектрические микрофоны, пьезоэлектрические датчики в автоматике и телемеханике и т.д.

Помимо прямого пьезоэффекта в пьезоэлектриках существует обратный пьезоэффект. Он состоит в том, что во внешнем электрическом поле пьезоэлектрик деформируется. Его существование следует из наличия прямого эффекта и закона сохранения энергии. При деформировании пьезоэлектрика работа затрачивается на образование энергии упругой деформации и энергии возникающего при этом в результате пьезоэффекта электрического поля. Следовательно, при деформировании пьезоэлектрика необходимо преодолевать дополнительную силу, кроме силы упругости кристалла, которая препятствует деформации и является фактором, обусловливающим обратный пьезоэффект. Чтобы компенсировать дополнительную силу, надо приложить внешнее электрическое поле, противоположное тому, которое возникает в пьезоэффекте. Таким образом, для получения некоторой деформации пьезоэлектрика под влиянием внешнего электрического поля необходимо, чтобы оно было равно, но противоположно направлено тому полю, которое при данной деформации возникает в результате прямого пьезоэлектрического эффекта. Механизм обратного пьезоэлектрического эффекта аналогичен механизму прямого пьезоэффекта. Под действием внешнего электрического поля кристаллические подрешетки положительных и отрицательных ионов деформируются различным образом, что и приводит к деформации кристалла.

Обратный пьезоэлектрический эффект также имеет многочисленные практические применения, в частности широкое применение получили кварцевые излучатели ультразвука.

У некоторых пьезоэлектриков подрешетка положительных ионов оказывается смещенной относительно подрешетки отрицательных ионов в состоянии термодинамического равновесия, в результате чего такие кристаллы оказываются поляризованными при отсутствии внешнего электрического поля. Их называют пироэлектриками.

Обычно наличие спонтанной поляризации маскируется свободными поверхностными зарядами, появляющимися на поверхности кристалла из окружающей среды под действием электрического поля, связанного со спонтанной поляризацией. Данный процесс происходит до тех пор, пока электрическое поле не будет полностью нейтрализовано. Однако при изменении температуры образца, например при нагревании, происходит смещение ионных подрешеток друг относительно друга, в результате чего изменяется спонтанная поляризованность и на поверхности кристалла появляются электрические заряды. Возникновение этих зарядов называется прямым пироэлектрическим эффектом.

Всякий пироэлектрик является пьезоэлектриком, но не всякий пьезоэлектрик является пироэлектриком. Это связано с тем, что у пироэлектрика имеется выделенное направление, вдоль которого существует спонтанная поляризация, а у пьезоэлектрика такого выделенного направления нет.

Наблюдается также и обратный пироэлектрический эффект: изменение электрического поля в адиабатно изолированном пироэлектрике сопровождается изменением его температуры. Необходимость его существования может быть доказана на основе термодинамического анализа процесса и продемонстрирована экспериментами. Обратный пироэлектрический эффект иногда называют электрокалорическим эффектом.

При электрокалорическом эффекте в пироэлектриках изменение температуры пропорционально изменению напряженности электрического поля, в других веществах наблюдается лишь меньший по величине квадратичный электрокалорический эффект.

Существуют диэлектрики, которые длительно время сохраняют поляризованное состояние после снятия внешнего воздействия, вызвавшего поляризацию, и создающие электрическое поле в окружающем пространстве (электрические аналоги постоянных магнитов). Такие диэлектрики получили название "электреты".

Если вещество, молекулы которого обладают дипольным моментом, расплавить и поместить в сильное электрическое поле, то его молекулы частично выстроятся по направлению поля. При охлаждении расплава в электрическом поле и последующем выключении поля в затвердевшем веществе поворот молекул затруднен, и они длительное время будут сохранять преимущественную ориентацию.

Первый электрет был таким методом изготовлен в 1922 г. японским физиком Ёгучи.

При изготовлении электретов в диэлектрик могут переходить носители заряда из электродов или межэлектродного пространства. Носители могут быть созданы и искусственно, например облучением электронным пучком.

Стабильные электреты получают различными методами:

· нагревания, а затем охлаждения в сильном электрическом поле (термоэлектреты);

· освещения в сильном электрическом поле (фотоэлектреты);

· облучения, радиоактивного излучения (радиоэлектреты);

· поляризации в сильном электрическом поле без нагревания (электроэлектреты) или в магнитном поле (магнетоэлектреты);

· при застывании органических растворов в электрическом поле (криоэлектреты);

· механической деформации полимеров (механоэлектреты);

· трения (трибоэлектреты);

· действием поля коронного разряда (короноэлектреты).

Все электреты имеют стабильный поверхностный заряд.

Электреты применяют как источники постоянного электрического поля (электретные микрофоны и телефоны, вибродатчики, генераторы слабых переменных сигналов, электрометры, электростатические вольтметры и др.), а также как чувствительные датчики в устройствах дозиметрии, электрической памяти; для изготовления барометров, гигрометров и газовых фильтров, пьезодатчиков и др. Фотоэлектреты применяются в электрофотографии.

Сегнетоэлектрики

.

Активные диэлектрики

Это органические и неорганические материалы, свойствами которых можно управлять с помощью внешних энергетических воздействий и использовать эти воздействия для создания функциональных элементов электроники.

К ним относятся сегнето-, пьезо-, пиро- электрики, электреты, материалы квантовой электроники, жидкокристаллические, электро – магнито – и акустооптические материалы и др.

Резкой границы между пассивными и активными диэлектриками не существует. Один и тот же материал может выполнять пассивные (изолятор, подложка, конденсатор) и активные функции преобразующего элемента. Требования к активным диэлектрикам противоположны: нестабильность свойств, а наиболее сильное изменение какого-либо свойства при внешнем воздействии.

Активные диэлектрики часто классифицируют по роду физических эффектов, которые можно использовать для управления свойствами. Однако, один и тот же материал может проявлять чувствительность к различным видам энергетических воздействий. Наиболее универсальны – сегнетоэлектрики (они же пьезо-, пироэлектрики, нелинейнооптические материалы и т.д.)

Сгруппируем активные диэлектрики по важнейшим для них свойствам или их специфике.

Это вещества, обладающие спонтанной поляризацией, направление которой может быть изменено с помощью внешнего электрического поля.

В отсутствии электрического поля сегнетоэлектрики имеют доменную структуру с различным направлением электрических моментов доменов. Суммарная поляризация может быть равна 0. Внешнее электрическое поле изменяет направление электрических моментов, что создает эффект сильной поляризации. Отсюда e может вырасти до сотен тысяч. Следствием доменного строения сегнетоэлектриков является нелинейная зависимость их электрической индукции от напряжения электрического поля и наличием диэлектрического гистерезиса (из-за необратимого смещения доменных границ).

Точка В - все домены ориентированы по полю. До точки А обратимое изменение доменных границ, далее АВ – необратимое

При снятии напряженности поля индукция не понизится до «0», а примет некоторое значение. При изменении полярности поля быстро снизится и изменит свое направление. При повышении температуры доменная структура распадается. Температура фазового перехода называется сегнетоэлектрической точкой Кюри. В точке Кюри e максимальна. Для BaTiO 3 Т к =120 о С.

Существует несколько сотен соединений со свойствами сегнетоэлектриков – это могут быть ионные и дипольные кристаллы. Температура точки Кюри изменяется от 15К (Pb 2 Nb 2 O 4) до 1483К (LiNbO 3).

Ионные: BaTiO 3 , PbTiO 3 , KNbO 3 , LiTaO 3 .

Дипольные: сегнетоваясоль (NaKC 4 H 4 O 6 4H 2 O), KH 2 PO 4 , NaNo 2 .

Применение сегнетоэлектриков:

1. изготовление малогабаритных конденсаторов с большой удельной емкостью;

2. изготовление диэлектрических усилителей, модуляторов;

3. в качестве ячеек памяти в вычислительной технике;

4. изготовление пьезоэлектрических и пироэлектрических преобразователей.

Для изготовления конденсаторов используются сегнетокерамические материалы (твердые растворы, смеси кристаллических фаз), которые не имеют сильных температурных зависимостей:

Материал Т-900 – твердый раствор SrTiO 3 и Bi 4 Ti 3 O 12 . Т к =-140 о С; e 20 о =900

Материал СМ-1 - BaTiO 3 +ZrO 2 +Bi 2 O 3 . e 20 о =3000 – используют для малогабаритных конденсаторов.

Материал Т-9000 – твердый раствор BaTiO 3 – BaZrO 3 e 20 о =8000 – используют для высоковольтных конденсаторов.

У материалов для варикондов (нелинейных конденсаторов), применяемых для управления параметрами электрических цепей, e изменяется от 4 до 50 раз (твердые растворы Ba(Ti, Sn)O 3 , Pb(Ti, Zr,Sn)O 3).

Материалы для ячеек памяти – сегнетоэлектрики с прямоугольной петлей гистерезиса. В первую очередь это триглицинсульфат.

При Е = 0, есть два устойчивых состояния. Одно используется для хранения «1», а другое «0». Считывание информации может проводиться без ее разрушения: оптическим методом или измерением сопротивления полупроводниковой пленки, нанесенной на сегнетоэлектрик. Время переключения ячейки несколько мкс (меньше, чем в монокристаллах).

Электрооптические кристаллы – изменяют показатель преломления среды под влиянием внешнего электрического поля. Если n ~ Е, то электрооптический эффект линейный или эффект Поккельса, если n 2 ~Е – квадратичный или эффект Керра.

Электрооптический эффект используется для модуляции лазерного излучения. Электрооптические модуляторы света создаются на базе LiNbO 3 , KH 2 PO 4 , ТР Pb(Ti,Zr)O 3 .

Материалы нелинейной оптики – используют эффект нелинейной поляризации среды под действием мощных световых пучков, создаваемых лазерами (n зависит от световой волны). Это позволяет преобразовывать частоты оптических сигналов (ИК – излучение переводить в видимое излучение). Эффективны KH 2 PO 4 , LiNbO 3 , LiIO 3 и др.

План

Введение

1. Описание пьезоэлектрического эффекта

а) Кристаллическая структура эффекта

б) Модельное рассмотрение

2. Деформации кристаллов

3. Обратный пьезоэлектрический эффект

4. Физический механизм обратного пьезоэлектрического эффекта

5. Свойства пьезоэлектрических кристаллов

6. Применение эффекта

Заключение

Литература

Введение

Тема моей курсовой работы «Пьезоэлектричество». Я выбрал эту тему, потому что пьезоэлектричество представляет собой интересное явление. До сих пор мы рассматривали поляризацию диэлектриков, вызванную внешним электрическим полем. В некоторых кристаллах поляризация может возникнуть и без внешнего поля, если кристалл подвергается механическим деформациям. Это явление, открыто в 1880 г. Пьером и Жаком Кюри, получило название «пьезоэлектрического эффекта». В наше время пьезоэлектричество нашло свое применение в различных видах деятельности человека. Я попытался побольше узнать о природе этого явления и его применении. Еще одной причиной послужившей выбору именно этой темы, стало то, что данный эффект применяется во многих приборах таких как микрофоны, телефоны, гидрофоны.

Для изучения данной темы я использовал следующую литературу: С.Г. Калашников «Электричество», Д.В. Сивухин «Общий курс физики: Электричество Том 3»,


1. Описание пьезоэлектрического эффекта

Во многих кристаллах при растяжении и сжатии в определенных направлениях возникает электрическая поляризация. В результате этого на их поверхностях появляются электрические заряды обоих знаков. Это явление, получившее название прямого пьезоэлектрического эффекта. Оно наблюдалось затем на кристаллах турмалина, цинковой обманки, хлората натрия, винной кислоты, тростникового сахара, сегнетовой соли, титаната бария и многих других веществ. Пьезоэлектрическими свойствами могут обладать только ионные кристаллы. Если кристаллические решетки положительных и отрицательных ионов, из которых построены такие кристаллы, под действием внешних сил деформируются по-разному, то в противоположных местах на поверхности кристалла выступают электрические заряды разных знаков. Это и есть пьезоэлектрический эффект. При однородной деформации пьезоэлектрический эффект наблюдается при наличии в кристалле одной или нескольких полярных осей (направлений). Под полярной осью (направлением) кристалла понимают всякую прямую, проведенную через кристалл, оба конца которой неравноценны, т. е. невзаимозаменяемые. Иными словами, при повороте кристалла на 180° вокруг любой оси, перпендикулярной к полярной, он не совмещается сам с собою. Вообще, для существования пьезоэлектрического эффекта при однородной деформации необходимо отсутствие, у кристалла центра симметрии. Действительно, если бы недеформированный кристалл имел центр симметрии, то последний сохранился бы и при однородной деформации кристалла. С другой стороны, в электрически поляризованном кристалле есть особое направление, а именно направление вектора поляризации. При наличии такового кристалл не может иметь центр симметрии. Получившееся противоречие и доказывает наше утверждение. Из 32 кристаллических классов не имеет центра симметрии 21 класс. У одного из них, однако, сочетание других элементов симметрии делает пьезоэлектрический эффект также невозможным. Таким образом, пьезоэлектрические свойства наблюдаются у 20 кристаллических классов.

а) Кристаллическая структура эффекта

Рассмотрим пьезоэлектрический эффект на примере кристалла кварца - важнейшего пьезоэлектрического кристалла, нашедшего широкие научно-технические применения благодаря своим превосходным механическим и электрическим свойствам. При обычных температурах и давлениях кварц встречается в так называемой

- модификации. Кристалл -кварца (рис. 1) относится к тригональной системе и имеет три оси симметрии второго порядка, обозначенные на рис. 1 через , , .

Они и являются полярными осями кристалла. Каждая из них соединяет противоположные, но неравнозначные ребра шестигранной призмы. Неравнозначность этих ребер видна из того, что к краям одного из них примыкают маленькие грани, обозначенные на рисунке буквами aи b, тогда как у краев другого ребра таких граней нет. Четвертая ось

является осью симметрии третьего порядка. Ее называют оптической осью, так как поворот кристалла вокруг этой оси на любой угол не оказывает никакого влияния на распространение света в кристалле.

При механических воздействиях на кристалл кварца на концах полярной оси (точнее, на перпендикулярных к ней гранях) появляются противоположные электрические заряды. Не обязательно, чтобы приложенные внешние силы действовали в направлении рассматриваемой полярной оси. Необходимо лишь, чтобы в результате действия внешних сил возникало растяжение или сжатие вдоль этой оси.

При температуре до 200 °С пьезоэлектрические свойства кварца практически не зависят от температуры. С дальнейшим повышением температуры пьезоэлектрический эффект медленно убывает. При 576 °С

-кварц претерпевает фазовое превращение и переходит в -модификацию. Кристаллы -кварца относятся к гексагональной системе, а потому пьезоэлектрические явления в них не наблюдаются в согласии с тем, что было сказано выше. При обратном понижении температуры первоначальная структура кварца восстанавливается, причем это восстановление происходит при температуре, несколько более низкой, чем исходная (гистерезис). Ниже всюду речь идет об - кварце.

б) Модельное рассмотрение

Возникновение пьезоэлектрического эффекта легко понять с помощью модельного рассмотрения, предложенного Мейсснером . Химическая формула кварца имеет вид

. Его кристаллическая решетка состоит из положительных ионов кремния и отрицательных ионов кислорода. Каждый ион кремния несет четыре, а каждый ион кислорода - два элементарных заряда. В первом приближении можно представить, что ионы кремния и кислорода расположены в шестигранных ячейках, одна из которых изображена на рис. 2, если смотреть на кристалл вдоль оптической оси (перпендикулярной к плоскости рисунка). Ионы кремния изображены большими шариками 1,2,3, ионы кислорода - маленькими. Те и другие ионы расположены по спирали, направление вращения которой определяется тем, какой взят кварц: левый или правый (рис. 1 и 2 относятся к левому кварцу). Ион кремния 3 лежит несколько глубже иона 2, а ион 2 - глубже иона 1. Расположение ионов кислорода не требует дополнительных разъяснений. В целом ячейка электрически нейтральна и не имеет дипольного электрического момента.

Для упрощения рассуждений заменим каждую пару соседних ионов кислорода одним отрицательным ионом с удвоенным зарядом. Мы придем к упрощенной модели ячейки, изображенной на рис. 3а). Если подвергнуть такую ячейку сжатию вдоль полярной оси

(рис. 3б)), то ион кремния 3 и ион кислорода 4 вклинятся между окружающими их боковыми ионами. В результате на плоскости А пластинки появится отрицательный, а на плоскости В- положительный заряды (продольный пьезоэлектрический эффект). При сжатии в боковом направлении, т.е. перпендикулярно к полярной и оптической осям (рис. 3в)), ионы кремния 1 и 2 получают одинаковые, но противоположно направленные смещения внутрь ячейки. Так же ведут себя ионы кислорода 5 и 6.

При этом сохраняется симметрия ячейки относительно плоскости, проходящей посередине между плоскостями С и D, и на этих плоскостях не возникает никаких зарядов. Однако ион кремния 3 и ион кислорода 4 смещаются наружу. Благодаря этому возникает дипольный момент, направленный в положительную сторону полярной оси

. На плоскости А появляется положительный, а на плоскости В - отрицательный заряды (поперечный пьезоэлектрический эффект). Знаки зарядов в продольном и поперечном эффектах, таким образом, противоположны. Из рассматриваемой модели видно также, что замена сжатия растяжением приводит к изменению знаков электрических зарядов при пьезоэлектрическом эффекте и что поляризация пропорциональна деформации кристалла (когда деформации малы). А так как между деформацией и силой согласно закону Гука (1635-1703) существует прямая пропорциональность, то поляризация кристалла при пьезоэлектрическом эффекте должна быть пропорциональна также приложенной силе. Наконец, из модели видно, что сжатие или растяжение кристалла в направлении оптической оси никакими пьезоэлектрическими эффектами не сопровождается. Все эти заключения подтверждаются опытом.

Пьезоэлектрический эффект (пьезоэффект) состоит в том, что при механических деформации некоторых кристаллов в определённых направлениях на их гранях появляются электрические заряды противоположных знаков. Пьезоэффект наблюдается в кварце, турмалине, сегнетовой соли, титанате бария, цинковой обманке и других веществах. Пьезоэлектрический эффект в кварце происходит вдоль электрических осей X 1 , X 2 , X 3 кристалла, перпендикулярных к его оптической оси Z. Обращение направления деформации кристалла изменяет знаки зарядов на поверхностях на противоположные. Обратный пьезоэлектрический эффект заключается в изменении линейных размеров некоторых кристаллов под действием электрического поля. Изменение направления электрического поля вызывает изменение характера деформаций на противоположный. Этот эффект имеет большое значение для получения ультразвука.

Пьезоэлектрики - это такие кристаллы, в которых под влиянием однородной деформации возникают дипольный момент, а значит, и электрическое поле, пропорциональные деформации. Наличие пьезоэлектрических свойств тесно связано с симметрией кристалла.

Пьезоэлектрики были открыты еще во второй половине XIX века, но нашли свое применение только в годы Первой мировой войны, когда на их основе были разработаны сонары (от англ. so na andr -- звуковая навигация и определение дальности) для обнаружения подводных лодок. Успешная реализация этого проекта привела к новым применениям пьезоэлектриков. Так были созданы головки для патефонов -- первых звукопроигрывающих устройств, пьезоэлектрические зажигалки, кварцевые часы и микрофоны.

Существуют и не совсем обычные применения пьезоэлектриков. Например, в Европе есть несколько ночных клубов, в танцпол которых встроены пьезоэлектрические генераторы, преобразующие танцевальные вибрации в электричество, которого достаточно для питания осветительных ламп, так как каждый танцор генерирует 5-10 Ватт мощности (см. видеоролик Sustainable Dance Club). Подобная технология применяется ив одном из фитнес-залов Гонконга, где часто проходят тренировки по шейпингу, боксу и бодибилдингу. Уже создано несколько так называемых «эко-клубов», обеспечивающих себя электричеством на 60% за счет пьезоэлектриков, вмонтированных в пол и в барную стойку. Еще дальше пошли в Израиле. В январе 2009 года там стартует пробный стометровый участок дороги со встроенными под асфальт пьезокристаллами. Израильские инженеры из фирмы Innowattech планируют получить до 40 киловатт мощности при четырехполосном движении.

Следует отметить, что пьезоэлектрический эффект, первоначально обнаруженный в природных материалах, таких как кварц, турмалин, Сегнетова соль и т. д., довольно слабый. По этой причине были синтезированы поликристаллические сегнетоэлектрические керамические материалы с улучшенными свойствами, такие как титанат бария BaTiO 3 и цирконат-титанат свинца PZT (аббревиатура формулы PbO 3 0 < x < 1), см. рис. 1.

пьезоэлектрик деформация кристалл

Рис. 1. Кристаллическая решетка PZT: (1) до и (2) после установления полярности

В PZT-кристалле отрицательные и положительные электрические заряды разделены, но при этом они распределены в объеме кристалла симметрично, что делает его электрически нейтральным. Чтобы подобная керамика стала пьезоэлектриком, необходимо «отрегулировать» полярность зарядов в кристаллической решетке. Для этого сквозь нагреваемую керамику пропускают сильное электрическое поле (> 2000 В/мм), которое приводит к нарушению симметрии в кристалле.

В пьезокристаллах заряды разных знаков формируют электрический диполь. Несколько близлежащих диполей формируют так называемые домены Вейса (Weiss domains). До установления полярности домены ориентированы произвольным образом. Под действием электрического поля и высокой температуры кристалл расширяется в направлении поля и сжимается по перпендикулярной оси. Это приводит к выстраиванию диполей вдоль приложенного электрического поля.

После выключения поля и остывания пьезокерамика обладает остаточной поляризацией. Если к кристаллу с отрегулированной полярностью приложить электрическое поле, домены Вейса начинают выравниваться вдоль поля, причем степень выравнивания зависит от приложенного электрического напряжения. В результате возникает изменение размеров пьезоэлектрического материала.

При механическом давлении симметрия распределения зарядов нарушается, приводя к разности потенциалов на поверхностях кристалла. Например, кварц объемом 1 см 3 при приложении силы 2 кН может произвести напряжение до 12500 В.

Пьезоэлектрический эффект (сокращенно пьезоэффект) наблюдается в анизотропных диэлектриках, преимущественно в кристаллах некоторых веществ, обладающих определенной, достаточно низкой симметрией. Пьезоэффектом могут обладать кристаллы, не имеющие центра симметрии, а имеющие так называемые полярные направления (оси). Пьезоэффектом могут обладать также некоторые поликристаллические диэлектрики с упорядоченной структурой (текстурой), например керамические материалы и полимеры. Диэлектрики, обладающие пьезоэффектом, называют пьезоэлектриками .

Внешние механические силы, воздействуя в определенных направлениях на пьезоэлектрический кристалл, вызывают в нем не только механические напряжения и деформации (как во всяком твердом теле), но и электрическую поляризацию и, следовательно, появление на его поверхностях связанных электрических зарядов разных знаков. При изменении направления механических сил на противоположное становятся противоположными направление поляризации и знаки зарядов. Это явление называют прямым пьезоэффектом . Пьезоэффект обратим. При воздействии на пьезоэлектрик, например кристалл, электрического поля соответствующего направления в нем возникают механические напряжения и деформации. При изменении направления электрического поля на противоположное соответственно изменяются на противоположное направления напряжений и деформаций. Это явление получило название обратного пьезоэффекта .

Схематичные изображения прямого (а, б) и обратного (в, г) пьезоэффектов. Стрелками Р и Е изображены внешние воздействия - механическая сила и напряженность электрического поля. Штриховыми линиями показаны контуры пьезоэлектрика до внешнего воздействия, сплошными линиями - контуры деформации пьезоэлектрика (для наглядности во много раз увеличены); Р - вектор поляризации.

В некоторых источниках для обратного пьезоэффекта неуместно используют термин электрострикция , относящийся к сходному, но другому физическому явлению, характерному для всех диэлектриков, деформации их под действием электрического поля. Электрострикция - четный эффект, означающий, что деформация не зависит от направления электрического поля, а ее величина пропорциональна квадрату напряженности электрического поля. Порядок деформаций при электрострикции намного меньше, чем при пьезоэффекте (примерно на два порядка). Электрострикция всегда возникает и при пьезоэффекте, но вследствие малости в расчет не принимается. Электрострикция - эффект необратимый.

Прямой и обратный пьезоэффект линейны и описываются линейными зависимостями, связывающими электрическую поляризацию Р с механическим напряжением t: P = dt

Данную зависимость называют уравнением прямого пьезоэффекта. Коэффициент пропорциональности d называется пьезоэлектрическим модулем (пьезомодулем), и он служит мерой пьезоэффекта. Обратный пьезоэффект описывается зависимостью: r = dE
где r - деформация; Е - напряженность электрического поля. Пьезомодуль d для прямого и обратного эффектов имеет одно и то же значение.

Приведенные выражения даны в элементарной форме только для уяснения качественной стороны пьезоэлектрических явлений. В действительности пьезоэлектрические явления в кристаллах более сложны, что обусловлено анизотропией их упругих и электрических свойств. Пьезоэффект зависит не только от величины механического или электрического воздействия, но и их характера и направления сил относительно кристаллофических осей кристалла. Пьезоэффект может возникать в результате действия как нормальных, так и касательных напряжений. Существуют направления, для которых пьезоэффект равен нулю. Пьезоэффект описывается несколькими пьезомодулями, число которых зависит от симметрии кристалла. Направления поляризации может совпадать с направлением механического напряжения или составлять с ним некоторый угол. При совпадении направлений поляризации и механического напряжения пьезоэффект называют продольным , а при их взаимно перпендикулярном расположении - поперечным . За направление касательных напряжений принимают нормаль к плоскости, в которой действуют напряжения.


Схематичные изображения, поясняющие продольный (а) и поперечный (б) пьезоэффекты

Деформации пьезоэлектрика, возникающие вследствие пьезоэффекта, весьма незначительны по абсолютной величине. Например, кварцевая пластина толщиной 1 мм под действием напряжения 100 В изменяет свою толщину всего на 2,3 х 10 -7 мм. Незначительность величин деформаций пьезоэлектриков объясняется их очень высокой жесткостью.

В 1756 г. русский академик Ф. Эпинус обнаружил, что при нагревании кристалла турмалина на его гранях появляются электростатические заряды. В дальнейшем атому явлению было присвоено наименование пироэлектрического эффекта. Ф.Эпинус предполагал, что причиной электрических явлений, наблюдаемых при изменении температуры, является неравномерный нагрев двух поверхностей, приводящий к появлению в кристалле механических напряжений. Одновременно он указал, что постоянство в распределении полюсов на определенных концах кристалла зависит от его структуры и состава, таким образом Ф. Эпинус подошел вплотную к открытию пьезоэлектрического эффекта.

Пьезоэлектрический эффект в кристаллах был обнаружен в 1880 г. братьями П. и Ж. Кюри, наблюдавшими возникновение на поверхности пластинок, вырезанных в определенной ориентировке из кристалла кварца, электростатических зарядов под действием механических напряжений. Эти заряды пропорциональны механическому напряжению, меняют знак вместе с ним и исчезают при его снятии. Образование электростатических зарядов на поверхности диэлектрика и возникновение электрической поляризации внутри него в результате воздействия механического напряжения называют прямым пьезоэлектрическим эффектом.

Наряду с прямым существует обратный пьезоэлектрический эффект, заключающийся в том, что в пластине, вырезанной из пьезоэлектрического кристалла, возникает механическая деформация под действием приложенного к ней электрического поля; причем величина механической деформации пропорциональна напряженности электрического поля. Обратный пьезоэлектрический эффект не следует смешивать е явлением электрострикции, т. е. с деформацией диэлектрика под действием электрического поля. При электрострикции между деформацией и полем существует квадратичная зависимость, а при пьезоэффекте -- линейна.

Кроме того, электрострикция возникает у диэлектрика любой структуру и происходит даже в жидкостях и газах, в то время, как пьезоэлектрический эффект наблюдается только в твердых диэлектриках, главным образом, кристаллических.

Пьезоэлектричество появляется только в тех случаях, когда упругая деформация кристалла сопровождается смещением центров тяжести положительных и отрицательных зарядов элементарной ячейки кристалла, т, е. когда она вызывает индуцированный дипольный момент, который необходим для возникновения электрической поляризации диэлектрика под действием механического напряжения. В структурах, имеющих центр симметрии, никакая однородная деформация не сможет нарушить внутреннее равновесие кристаллической решетки и, следовательно, пьезоэлектрическими являются только 20 классов, у которых отсутствует центр симметрии. Отсутствие центра симметрии является необходимым, но не достаточным условием существования пьезоэлектрического эффекта, и поэтому не все ацентричные кристаллы обладают им.

Пьезоэлектрический эффект не может наблюдаться в твердых аморфных и скрытокристолических диэлектриках, так как это противоречит их сферической симметрии. Исключение составляют случаи, когда они становятся анизотропными под влиянием внешних сил и тем самым частично приобретают свойства одиночных кристаллов, Пьезоэффект возможен также в некоторых видах кристаллических текстур.

До сих пор пьезоэлектрический эффект не находит удовлетворительного количественного описания в рамках современной атомной теории кристаллической решетки. Даже для структур простейшего типа нельзя хотя бы приближенно вычислить порядок пьезоэлектрических постоянных.

Каждый пьезоэлектрик есть электромеханический преобразователь, поэтому важной его характеристикой является коэффициент электромеханической связи k. Квадрат этого коэффициента представляет собой отношение энергии, проявляющейся в механической форме для данного типа деформации, к полной электрической энергии, полученной на входе от источника питания.

Во многих случаях пьезоэлектриков существенными являются их упругие свойства, которые описываются модулями упругости с (модулями Юнга Ею) или обратными величинами -- упругими постоянными s.

При использовании пьезоэлектрических элементов в качестве резонаторов в некоторых случаях вводят частотный коэффициент, предстовляющий собой произведение резонансной частоты пьезоэлемента и геометрического размера, определяющего тип колебаний. Эта величина пропорциональна скорости звука в направлении распространения упругих волн в пьезоэлементе. В настоящее время известно много веществ (более 500), обнаруживших пьезоэлектрическую активность. Однако только немногие находят практическое применение.